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Introduction

m Algebraic operations produce an image which is pixel-by-

pixel sum, difference, product, or quotient of two input
Ch apter 7 images:
IC(x,y) = A(X, ) +B(x, Y)]
el IC(x,y) = A(X, ¥) = B(x,Y)|
IC(x,y) = A(X, ) xB(x,Y)|
Algebraic Operations [C(x, ) = A(x, ¥)+B(x,Y)]

m The resulting pixel values must be integers within a given
range, e.g., 0-255. Rounding and clipping is necessary.

m B(X, y) may be a constant, which changes the overall
brightness of A(x, y).
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Applications

m Addition
— Produce multiple exposure effects
— Average several images of the same scene to reduce noise.
m Subtraction
— Remove unwanted contents
— Detect moving objects
— Calculate gradient to extract edges
m Multiplication
— Correct digitizing errors or illumination non-linearity
— Change color balance
— Create special effects
m Division
— Detect changes
— Correct uneven illumination
— Process multispectral images
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Algebraic Operations and Histogram

Find the histogram of sum images:

[C(x.y) = A(X. )+ B(x,Y)]
Assume A and B are uncorrelated. Joint 2-D histogram:
H (DA- DB) = HA(DA) HB(DB)
To reduce the 2D histogram to a 1D marginal histogram:

H(D,) = J:Z H e (D4, Dg)dDg = f; H,(Da)H; (Dg)dDg

Taking into account relationship among D,, Dz and D¢:

H(D)=[ H,(D; —D;)H,(Dy)dD,

The right side is a function of D.. Thus
Hc (D) =H,(D)*Hg(D)
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Histogram of Sum Images: an Example

m Supposing two images have Gaussian histograms, the
sum image also has a Gaussian histogram.

— The mean equal to the sum of individual means, and
— The variance equal to the sum of individual variances.

O;

H,(X)=A exp{—(xz_—‘é‘)z}, i=12

I {10040 A2 ] L)'

2(0-12 + 0-22)

m The convolution formula still holds as long as one of the
images is changed to its negative.
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Averaging for Noise Reduction

m Consider a number of exposures taken on the same
scene, each with independent additive noise:

D, (X, ¥)=S(X,y)+ N.(x, ), i=12,....,M

= N;(x,y) is an independent sample of zero mean noise field:
E[N;(x, y)]=0
E[N, (x, )N, (x,y)]=0

m Signal-to-noise power ratio of individual images:

P(x,y) = S%(x, y)/E[N?(x,Y)]
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Averaging for Noise Reduction (cont.)

m Average of M images:
— 1 ¥ Demo_NoiseAv
D(x,y) =1 2[SCuy) + Ny (x, )] -

i=1

Signal-to-noise power ratio P(x,y) is increased by a factor
of M, or, SNR is increased by 10 logM dB:

P(x,y)=M P(x,y)

An example.
Try to write a program to verify this conclusion.

Demo: Demo Algebral. (Code)
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Image Subtraction

m Background subtraction: see Fig.7-3 on p.109 (removing
the uneven illumination field effect)

m Motion detection: see Fig.7-4 on p.110 (removing
stationary freeway to show the moving vehicles)

m Gradient magnitude:

— The gradient field: VE (%, y) =T of (ax, y) i of ((;; y)

of 2 (of \
rreen=y(5) +(5)

— To avoid calculating square roots:

[V 0, )| = max{ f (0, ) = f O+ A YL (6 )= F O y+y) |

ﬁnage subtractiorﬂ
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— The gradient magnitude:

Summary of Algenraic Operations

m The histogram of a sum image is convolution of the

histograms of the two component images.

m Convolution of two Gaussian functions produces a

broader Gaussian, with the means and variances added.
m Averaging M images increases the SNR by 10 logM dB.

m Subtracting slightly offset images gives a partial

derivative image.
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Summary of Algenraic Operations (cont.)

m Image multiplication can be used to mask unwanted

areas in an image by setting the multiplier to zero.

= Image division is useful in removing spatially varying

digitizer sensitivity function.
m Multispectral image processing will be discussed later.

m Problems of Chapter 7: p.113, 4
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Chapter 8

Geometric Operation
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Introduction

m Geometric transform changes spatial relationships among
objects in an image: Moving things around (like stretching

a rubber sheet).

m Constraints: pixel order is preserved so that no random

scrambling of pixels occurs.

m Two basic operations involved:
— Spatial transformation

— Gray level interpolation
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Introduction: Spatial Transformation

m It is desirable to preserve continuity of curvilinear

features and connectivity of objects.

m General definition of spatial transformation:

g(x,y)=f(x,y") = fla(x y),b(x,y)]

where f(x,y) is the input image, and g(x,y) is the output.
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Spatial Transformation (cont.)

m Connectivity is preserved if a(x,y) and b(x,y) are

continuous.

m Gray levels in the input image are defined at integer
values of (x, y), while in the output image, g(x,y) may be
taken from f(x,y) at fractional coordinate positions.

m Two possibilities:

— Pixels in f —» Positions between pixels in g

— Positions between pixels in f — Pixels in g

15
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Introduction: Gray Level Interpolation

m Two approaches:

X X
L1 A pixel value is
y o~ Y divided into four
parts.
Forward mapping (pixel carryover)
X' X
. ey Four plxe! vaIu_es
Y T y \‘ are combined into
one.

Backward mapping (pixel filling)
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iorward Mapping

m Each output pixel may be addressed several times.

®m Many input pixels may fall outside output range: a waste.
m If image is enlarged, some output pixels may be missed.

m If the size is reduced, more than 4 input pixels may
contribute to an output pixel.

X

e

Forward mapping (pixel carryover)
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Backward Mapping

Output pixels are generated line-by-line and point-by-

point.

Each output pixel is contributed by 4 input pixels.

Input pixels are accessed randomly.

It is a more practical way of doing interpolation.

X X

N N\ i L—T
y y\ﬁ

Backward mapping (pixel filling)
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Gray-Level Interpolation Methods

m Using backward mapping, output pixels generally map to
somewhere between four input pixels.
m Zero-order technique: Nearest neighbor interpolation:

— Computationally simple.

— Artifacts may occur in areas with fine details (see Fig.8-2).

X' X
/—_\
@ l—— 7

Nearest neighbor interpolation
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Bilinear Interpolation (1)

m Itis a first-order technique, which gives a more desirable
result with only slightly increased computation complexity.

m Fitting a plane from 4 points is over-determined. A bilinear
function is required to interpolate on a rectangular grid.

m Problem: Find f(x,y) given f(0,0), f(1,0), f(0,1), and f(1,1).
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Bilinear Interpolation (2)

m Assume that f(x,y) is on a hyperbolic paraboloid defined
by the following bilinear equation:

f(x,y)=ax+by+cxy+d

21
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Bilinear Interpolation (3)

m Linear interpolate from f(0,0) and f(1,0) to f(x,0), and from
f(0,1) and f(1,1) to f(x,1):
f (x,0) = f(0,0)+ x| f (1,0) - f(0,0)]
f(x1) = f(01)+x[f(L1) - f(0,1)]
m Linear interpolate from f(x,0) and f(x,1) to f(x,y):

f(x,y)=f(x0)+y[f(x1)-f(x0)]

£(1,0)

Computation Complexity:
6 Additions +
3 Multiplications
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Bilinear Interpolation (4)

m Combine the above three equations into one:

f(x,y)=[f@10)- f(0,0)]x+[f(0,1)- f(0,0)]y
+[f (L1 + f(0,00- f(0.1)— f(1,0)]xy + f(0,0)

Computation Complexity:
8 Additions +
4 Multiplications

23
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Bilinear Interpolation (5)

m Intersection of the hyperbolic paraboloid in x-z and y-z

planes are straight lines.

m Gray-levels across neighboring grids are continuous.

m Slopes (gradients) are not continuous.

O N = o ©

05

Generated with 0 0
Demo_Bilinear.m
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Demo_Bilinear.m
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High Order Interpolation

m High-order interpolation is used when
— Higher resolution is required, or
— Slope discontinuity is not tolerable.
m High-order interpolation can be done by solving an
equation more complicated with more than 4 coefficients.
m Some high order techniques:
— Cubic spline
— Legendre centered function

— Sinc function
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Spatial Transformation

m The general form:

g(x,y)=f(x,y") = fla(x y),b(x,y)]

m Simple transformations

= Identity operation: {a(x, y) = X
b(x,y) =1y

= Translation:
{a(x, y) = X + X,
b(x,y) =Y+ Y,
Or, in matrix form
(in the homogeneous a(x,y) 1 0 x,
coordinates): b(x,y)[=]0 1 vy,
1 0O O 1
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Spatial Transformation (cont.)

m Magnification: a(x,y) = x/c
{b(xiy)=y/d
or, in matrix: a(x,y) 1/c 0 0| x
b(x,y)|=| 0 1/d O}y
1 0 0 11
m Reflection about y axis:
{a(x,y)z—x
b(x,y)=1y
or:
a(x,y) -1 0 0} x

b(x,y)|=|10 1 0}y
1 0 0 1]1
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Spatial Transformation (cont.)

m Rotation by an angle 4:

Spatial Transformation (cont.)

= Rotation by & about (X, Y,) = combination of rotation

X
a(X,y) = xcos 6 — ysin 0 and translation:
{b(x, y) = xsin 6 + y cos @ — First, translate the image to make (x,, y,) the origin.
) y — Rotate by ¢, and
In the matrix form: — Translate back to restore the origin.
a(x,y) cosg -sing 0| x a(x,y) 1 0 Xx,[[cos@ —singd 0|1 0 —x,| x
b(x,y)|=|sing cos& Oy b(x,y)|=[0 1 vy,|sin@d <cosd 00 1 -y,
! . g 2fif 1 00 1/ 0 0 1jfo o 1 |1
cosd —sind —x,C088+y,sinf+X, | X
:{sine cosed —Xx,Sin@—y,cos0+Yy, |y
0 0 1 1
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Separable Implementations Separable Implementations (cont.)

m |t is easy to separate translation and magnification into
two steps, for example, horizontal first, and then vertical.

m Itis also possible to perform a rotation in two steps.
a(x,y)=xcos @ —ysin 4
b(x,y)= xsin 8 + ycos &

Solving the first equation for x:

‘ a(x,y)+ysiné
cosé

Substituting into the 2nd equation:

a(x,y)sinéd+y
cosé

b(x,y) =

30
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m Having obtained the equations

‘= a(x,y)+ysiné & b(x, y) = a(x,y)sin@+y
cosé cos @
a two-step rotation can be performed as follows.

Step 1: keep y unchanged:

{a'(x, y) = xcos @ — ysin @
b'(x,y) =y

Step 2: keep the obtained a(x,y):
{a(x, y)=a'(x,y)

a'(x,y)sin @ +

31
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General Transformations @

Applications of Geometrical Operations @

m Analytical expressions generally do not exist. Transform m Geometric calibration — To remove camera-induced
may be got from measurements. For example (Fig.8-4): geometric distortion.
— Take the first shot on a grid pattern, m Image rectification — To correct non-rectangular pixel
— Calculate the transformation numerically from the grid, and coordinates. (also see Fig.8-8, Fig.8-9)
— Apply the obtained transformation to subsequent shots. m Image registration — To register images for comparison.
= Control point approach: Only a small number of pixels are — MRIimage registration
specified, and most pixels are corrected by interpolation. — Anti-attack watermark detection
Pol il fitt — Motion detection
= Polynomial fitting: . :
y . g . N _ m Image format conversion (Fig.8-10)
— Determined: No. of polynomial coefficients = No. of control points M acti ¢ i gi More
m Map projection (for self-readin
— Over-determined or under-determined: pseudo-inversion technique P p_ ) ( _ g) examples
. . . : : m Morphing for special effects (Fig.8-17)
m Piecewise bilinear interpolation
m Problems of Chapter 8: p.138, 1,4,
32 33
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Histogram of Negative Image @

End of Part One
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Noise Reduction by Image Averaging

0

0 100 20
Shuozhong Wang, SCIE, Shanghai University

Code for Noise Reduction by Averaging (1)

sized [M,N])

K=20; % Number of images

S=20; %

F=zeros (M,N,K) ;

for k=1:K % 20 noisy images
F(:,:,k)=S*randn (M,N) +FO0;

end

img4a (F0, [10 480], 'Clean Image');

img4a(F(:,:,1), [20+M 480], 'Noisy Image') ;

IM=img4a(F(:,:,1), [30+2*M 480]) ;

(get image FO,

Noise magnitude
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Code for Noise Reduction by Averaging (2)

% Histogram of clean image
figure('Pos', [10 400-N M N]) ;
imhist (uint8 (F0),256) ;

% Histogram of noisy image
figure('Pos', [20+M 400-N M N]) ;
imhist (uint8(F(:,:,1)),256);

% Histogram of noisy image
FG=figure('Pos', [30+2*M 400-N M N]) ;
imhist (uint8(F(:,:,1)),256);
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Code for Noise Reduction by Averaging (3)

for k=1:K
Fbar=FO0;
for 1=1:k, % averaging
Fbar=Fbar+F(:,:,1);
end
Fbar=clip (round (Fbar/k),0,255);
close (IM);
IM=img4a (Fbar) ;
close (FG) ;
FG=figure;
imhist (uint8 (Fbar), 256) ;
pause;
end
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Exercise: P.113 4

H1=[0 100 400 700 800 600 500 600 500 400 400 600 400 100 0 0]:
H2=[0 100 300 700 700 600 500 600 500 400 400 600 500 200 0 0]:

% Histogram of the difference image: Im2-Iml:

H3=conv2(H2,H1(16:-1:1));

M=sum(H1(:)):;

figure("Pos",[10 300 300 220], "Units","norm");

axes("Pos",[-1 .1 .86 .86]):;
stem(0:15,H1);

figure("Pos",[10 300 300 220], "Units","norm®");

axes("Pos",[-1 .1 .86 .86]);
stem(0:15,H2);

figure("Pos",[10 300 600 220], "Units","norm®");

axes("Pos",[-1 .1 .86 .86]);
stem(-15:15,H3/M) ;

H3=round(H3/M) ; % Histogram of difference image
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Exercise: P.113 4 (cont.)

800 800
® o¥o}
600 1 600
400 1 400
200 1 200 1)
i i i |
0 5 10 15 0 5 10 15
600
500 | OOO J
400} 4
300} i
200} i
il ...
% “ﬁT . ) : fooooy
H3=[0 O 0 2 11 41 93 151 190 228 277 331 372 425 495 541

518 456 403 362 311 261 225 187 130 66 21 3 0 0 O]

Shuozhong Wang, SCIE, Shanghai University

41

Addition: Multiple Exposure
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Addition: Multiple Exposure Effects

Go back
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Image Subtraction @

Subtraction: Detection of Moving Objects @

Moving objects
in a video
sequence can
be detected by .
pixel subtraction. |} &

Go back
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Subtraction: Background Removal @ Subtraction: Edge Extraction @
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m Detection of motion or slight changes: difference of two
nearly-identical and slightly offset images:

C(x,y)=A(X,y)— A(X+AX,y) = % A(X, y)AX
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Multiplication: Correct Brightness

Multiplication: Color Balance Correction

m Suppose an image is too pink ( too red and too blue), but
its green channel is just fine.

m To reduce red and blue, multiply them by a percentage
less than 100%. Example: multiply it by (0.87, 1.00, 0.95).

m Multiplication by a color is analogous to looking through a
filter of that color.

m Looking at the overly-magenta image through a "pale
green" filter will correct the image.

e T T
4 _ﬂ°

="

] _08’7— (228,199, 210) . o S
B 199/228=0.87=223 litb it 2l ram =
« 199/199=1.00=255 - meaningless, but... =

199/210=0.95=242

1228, 199, 210) (0.89, 0.78, 0.82)*(0.87, 1.00, 0.95) _p— (199,199, 139)

{. “a pale green filter” = anign | % i
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Addition and Multiplication Division: Detection of Changes
“hard d mode

Slight changes in image

can be detected using

pixel division.
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Division: Correct Uneven lllumination

Sonmet for Lena

Sonnet for Lena

O dear Lema, your hemuty in o vast
1 in hard sommtienes to desesite i o
13hought the ratite world | mpreas
1 aly your portrait I could rumipress.
Alust Firnt whe 1 tried to wse VQ

‘Craya found oot the proper fractal.
‘And while thaee setbacks are all quile severr

§ gkt bave ixed thom with hacks bere of there
But when Sitets took sparkle from yout eyes
Voaid, *Dama ol this. 1T just digitise.”

Thomas Cobihurst

B(x,Y) = [(x, Y) R(X.) .

Borig (X' y) o Iorig (X! y) Rorig (X' y)

Botank O Y)  Totan (X3 Y) Rijanic (X,'Y)

Borig (X’ y)
Bblank (X’ y)

eg Rorig (X’ y)
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/ blank

Same illumination:
/ =

orig
2. Reflectivity of blank paper
is constant.

3. Even background obtained
by division.
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Multispectral Images: Flood Assessment

Flood assessment:

Surat Thani, Thailand

Image arithmetic
operations, neural

networks and image

fusion are used.

SAR image,
Jun 3,1997

SAR image,
Aug 30,1997
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Correction of Geometric Distortion
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MBEL R T
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TR AN FAET ST RO MDA Lk £, L6, MBRBREOR
SR PRI 193 PR (M Rl
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Correction of Lens Distortion
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Correction of Lens Distortion
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