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Introduction – Basic assumptions and framework 
 
This note explains the basis for the program SIEVER that was part of the former 
microBRIAN image processing system. SIEVER aimed to help users identify and 
remove image control points that were in error and (in particular) gross errors or 
“outliers”. 
 
The context of SIEVER is that there exists an image or a number of images (perhaps 
overlapping frames or the same area at different times) and a map base or coordinate 
system within which they will be referenced. Points in the images (called here 
“GCP”s or Ground Control Points) are selected either pairwise between images or 
from the map base that identify the image or map coordinates of spatial features as 
accurately as possible. This may be done by a person or by a program (such as a 
correlation program). In the case of the identification of positions from the map base 
it is generally necessary for a person to identify the GCPs. 
 
For the activity being described here, it is necessary that each identified feature have a 
unique identifier so that a given feature can be located in all of the images or the map 
base frame if it has been located or identified in any one. In microBRIAN this was 
accomplished simply by means of associating a separate list of GCPs with each image 
or map base and associating each record in the file with a unique spatial feature. In 
this way, if a feature is not present in an image of map base its location in the 
associated file is empty. If this or similar method of identifying features across 



multiple images is available then the GCPs that are common to all of a group of 
images can be identified quickly. 
 
The second aspect to the best use of SIEVER is that it is assumed that major 
geometric distortions have been “nominally” removed. That is, panoramic distortion 
or various artefacts created by the geometry of the image view and data collection 
have been taken into account in the coordinates of the GCPs in the images. This is 
assumed to be done to a point where remaining geometric differences between any 
images or a map base can be accounted for (or well described) by an “affine” 
transformation. 
 
An affine transformation is linear such that if one image has coordinates (x,y) and the 
other (x’,y’) then the relationship between the coordinates has the form: 
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This six parameter transformation can be thought of as some combination of shift of 
origin, rotation, skew and possibly a separate “stretch” in the x and y directions. 
 

Fitting Transformation Models 
 
For any pair of images there can be transformations from each coordinate system to 
the other. If all of the transformations have been determined then any feature in one 
image can be located in each of the others. In the case where all of the transformations 
can be represented by a simple affine transformation then if the transformation is 
exactly known in one direction it can be inverted to obtain the transformation in the 
other direction. 
 
However, transformations are never known exactly. Normally, the GCPs are used to 
estimate the coefficients by least squares or some other measure of goodness of fit 
between the image coordinates and those predicted by the transformation. The GCPs 
are normally subject to error or “noise” and in this process any outliers present will 
play a disturbing role. 
 
There will always be some error or noise level that limits the accuracy of location of 
the GCPs and therefore also limit the accuracy of the estimated coefficients of a 
transformation. However, “outliers” are points that are inaccurate well beyond this 
base of error or “noise”. 
 
When the transformation is being estimated it is usual to suppose that errors in GCPs 
are only in those of the “TO” side of the transformation. That is in the affine 
transformation above we are calling the (x,y) data the FROM side of the 
transformation (or the coordinates the transformation acts on) and the (x’,y’) data the 
TO side of the transformation (or the coordinates produced by the action of the 
transformation). In this case, assuming the errors are uncorrelated, it is possible to 
separate the fit to the x and y components of the TO side as: 
 



 10 11 12i i i ix a a x a y ε′ = + + +  
and 
 20 21 22i i i iy a a x a y η′ = + + +  
 
where iε  and iη  and noise variances and the coefficients can be efficiently found by 
two separate leastsquares solutions. 
 
However, the errors usually occur in both the FROM and the TO coordinate systems – 
a fact that is utilised when the inverse transformation is estimated – where the errors 
are then assumed to be only in the FROM side of the transformation. 
 
In the case of an affine transformation it is possible to solve for the coefficients 
assuming errors in both variables – but only with a simplified error model. This 
solution is a by-product of the work described here and will be described in passing. 
 
However, the more significant issue relates to outliers. In this case, if the outlier is in 
a GCP that is on the FROM side of the system then it is difficult if not impossible to 
actually identify the outlier. Its presence is often only indicated by a very poor fit to 
the data. Moreover, if the outlier is on the TO side of the system then because least 
squares balances all errors it is likely the fit to the outlier will be better than to other 
data. 
 
The situation where the outliers are strongly fitted by the model – and hence very 
difficult to identify as outliers – is closely related to a concept called “predictive 
error”. The predictive error is the error at a point between the data and the model 
prediction based on all data except the point in question. Conversely, it measures the 
sensitivity of the model to the data at the point or the degree of control that the data 
point exerts on the model. The sensitivity can be expressed as a “predictive error 
multiplier” which will be large if the model is very sensitive to the presence of a data 
point. 
 
High predictive error multipliers are both good and bad. A high value indicates a very 
important point in the modelling – or one that exerts a lot of influence over the model. 
However, such points are also the ones that introduce the greatest effects of error and 
when they are an outlier the effect can be very great but the actual error at the point is 
usually small – since the model fits the outlier in preference to other points! 
 
The action of SIEVER therefore does three things. Firstly, it solves for the affine 
model without assuming the errors are all on one of the FROM and TO sides of the 
transformation model. Then it estimates the predictive errors of the residuals as one 
means of identifying outliers. Then it plots the squares of the errors (which would 
have a Chi-square distribution if they were from a normal population or errors) 
against the Gamma distribution in what is called a Q-Q (or Quantile-Quantile) plot. 
This also allows errors that are too large to be explained as simply large but still 
possible error values to be identified. 
 

The SIEVER model 
 



The SIEVER model assumes there are a set of Nv images and/or map base with 
common GCPs as identified from the individual GCP files of the images. 
 
The matrix with M rows (where M is the number of common GCPs) and 2Nv columns 
and form: 
 
 1 1 2 2, , , ,... ,N NA x y x y x y =  
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(where the curled underscore indicates a column vector) is the starting point for the 
analysis. 
 
Because we have assumed that nominal geometric transformations have been carried 
out on the data to remove the major image distortions and that the relationships 
between the images can (in the absense of noise) be modelled as affine 
transformations, the situation is one of the Generalised Linear Model (GLM) or 
Factor Analysis. 
 
That is, we are assuming that there is an underlying coordinate system ( , )µ ν  such 
that for each of the image coordinate systems we have: 
 
 0 1 2j j j jx a a aµ ν ε= + + +  
and 
 0 1 2j j j jy b b bµ ν η= + + +  
 
where ( , )ε η  are the errors in the coordinates. 
 
We are going to assume for convenience that the images coordinates have had the 
means extracted from them so that the data have “zero mean”. The underlying 
coordinates will also be assumed to have “zero mean”. In this case it is possible to 
express the form of the underlying transformation as: 
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It follows that we could express the matrix A in the form: 
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where E is the matrix of random errors or “noise”. That is, The underlying model is 
one where A has basic Rank 2 or A is the product of a matrix of size Mx2 and one of 
size 2x2Nv. 
 

Solving for the underlying model and errors 
 
The separate the underlying model from the errors we will use the theorem of Eckert 
and Young () which states that the best approximation to a matrix by one of lower 
rank can be conveniently found using the Singular Value Transformation (SVD) of 
the matrix. 
 
The SVD (introduced by Lancos, 1958) provides an eigenvalue decomposition for an 
arbitrary matrix. That is, if A is any MxN matrix then there exist matrices U (MxN), S 
(NxN and diagonal) and V (NxN) that satisfy the conditions: 
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Since, using these rules we have that: 
 
 2T TA A VS V=  
 
it follows that the squares of the singular values are the eigenvalues of TA A  and the 
matrix V is the matrix of its eigenvectors. 
 
An alternative way to write the SVD is in terms of the column vectors of U and V in 
the form: 
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The Eckert-Young theorem can be stated in the way used here in the following form. 
If B is the best approximation to A by a matrix of rank p<N where “best” means in 
the sense of minimising the sums of squares of differences between all elements of the 
matrices then: 
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As with many cases of least squares there is an “Analysis of Variance” (AOV) for this 
generalised system in the form: 
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where “TSS” stands for the Total Sum of Squares, “MSS” the Model Sum of Squares 
and “RSS” the Residual Sum of Squares. 
 
Of special interest to us is the AOV for a single row of each matrix. Let the i’th row 
of a matrix be denoted by ( )ir A



. It is a row vector that will, in this case, have N 
components. Then: 
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From this (or directly) it can be seen that 2 2( ) ( )i ir A r US=

 

. 
 
It is easy to see that in our specific case, where p=2 and N as used above is actually 
2Nv then the corresponding solution to the SIEVER model is: 
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Because of the ortho-normal properties of V it therefore follows that the AOV above 
on US is a direct analysis of the errors between the underying 2 factor model of the 
GCPs and the selected GCPs. Moreover, the row AOV above is an analysis of each 
row or identifiable spatial feature and our objective is to isolate the outliers to the 
features and images in which they occur. 
 
Note that these steps have overcome the problem of the very serious problems that 
can occur due to assuming the errors are all in one “side” of the equations. However, 
we still have a difficulty in that least squares “spreads” error across all the points and 
can dominated by a few points with strong “control”. If these points are also outliers 
then their identification can be very difficult. In many cases the best tool to use is the 
human eye and so in the following there will be a number of suggests plots that are 
sometimes much more decisive than the accompanying statistics! 
 

Analysing the SIEVER solution 
 
The first action in SIEVER is to normalise the matrix A so that the columns have zero 
mean and the sum of squares of the columns is 1.0. In this case, the matrix TA A  is in 
“correlation” matrix form. 
 
The value of the normalisations is twofold. First, as noted above, the formulation is 
more convenient when the columns have zero mean but secondly the normalisation 
frees the data of scale changes that different coordinate systems may have. 
 
The SVD of the matrix is then formed to obtain the components discussed above. 
 
The possible actions following this are: 
 
Basic “PCA” Summary 

 
The SVD of the normalised matrix A can be interpreted as a Principal Component 
Analysis or PCA of A in correlation form (see Harrison & Jupp, 1990; 1995). 
 
A simple summary set of statistics comprises (for each of the N components) the 
Principal Variance (Pvar), the percent variance (Var%), the Total Variance (Tvar%) and 
the Noise to Signal Ratio (%) (NSR%) defined by: 
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These can be calculated for any PCA or SVD exercise and in our case, if the rank of 
the system is 2 we should have the Total variance in the first two components very 
high and the contribution of the remaining components as very low and NSR should 
reach its minimum at k=2. 
 
It may be shown that these statistics are not very reliable for only two images and it is 
better in every way if SIEVER is used on a number of images in combinations – such 
as up to 5 in an initial investigation and down to studies of pairs of images in final 
outlier searches. This will be discussed later. 
 
Row or Feature based Error Analysis 

 
The issue, of course, is how to measure what is “high” and “low” with regard to the 
model fit. To help with this we can also generate some statistics for the rows of A – 
that is for the spatial features that are being mapped as GCPs in the images being 
registered. 
 
For this we will work assuming that the assumption of the rank of A (p) being 2 is 
confirmed by the PCA analysis. The consequences of its not being true are discussed 
later. The assumption we have from this is that the estimated variance of the residual 
can be written: 
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The row or feature statistics we can generate to help to go on from here are, for 
Feature i, the Normalised Error ( 2

ie ), the feature Chi-square ( 2
iX ) and the Predictive 

Error Weight ( (%)iPE ) as defined by: 
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The derivation of the Predictive Error formula and its relationship with “jacknifing” is 
to be described fully in a separate document since it is also used in other modules – 
such a MODEL to characterise the sensitivity of the models to presence or absence of 
image features. 
 

Using the Q-Q Plot 
 
To investigate the distribution of the errors remaining after fitting the general affine 
model, SIEVER uses a technique that is very useful from exploratory data analysis 
called “Q-Q Plotting”. 
 
The Quantile-Quantile Plot 

 
A Q-Q (or Quantile-Quantile) plot is constructed o test the statistical distribution of 
data against a known model. A “quantile” is a fraction (which when expressed as a 
percentage is called a “percentile”) between zero and one. 
 
Consider that you have M data values (yj) which are sorted into increasing order such 
that: 
 
 1 2 ... My y y≤ ≤ ≤  
 
Associated with each yi is a estimate of the fraction (or quantile) of data values less 
than or equal to yi. This is simply: 
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Suppose F(x) is the cumulative distribution function for a probability distribution 
function P(x) such that: 
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The set of x values that satisfy: 
 



 ( ) 1,i iF x q i M= =  
 
are the set of values for which the expected fraction of values from a sample of M 
“drawings” which are less than or equal to xi is the quantile qi. 
 
It follows that if the data yi are drawings from the distribution function P(x) then the 
plot of yi against xi for i=1,M will be close to a straight line with slope one and 
intercept zero. 
 
This plot is the Q-Q plot and tests whether the data values are samples from the 
distribution P(x). 
 
Gamma Probability Plotting 

 
To test the distribution of the residual errors from the SIEVER model, SIEVER uses a 
general method called Gamma probability plotting. This allows the distribution to be 
tested against a family of possible distributions, one of which is 2χ . 
 
The hypothesis is that if the residuals are normal or near normal then the statistic 2

iX  
defined in the previous section will be distributed as Chi-square with (N-p) degrees of 
freedom – or 2

N pχ − . 
 
The cumulative distribution for the incomplete Gamma distribution can be defined as: 
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If x is 2

rχ  then 0α = , 1/ 2λ =  and / 2rη = . It follows that if the yi values above are 
the sorted 2

iX  defined in the previous section and you obtain the values xi by solving: 
 
 ( ;0,1/ 2, ( ) / 2)i iF x N p q− =  
 
then the Q-Q Plot of the xi values against the yi values should be a straight line with 
slope one and intercept zero. In SIEVER this is tested by a linear regression and 
associated statistics. 
 
Interpreting the Q-Q Plot 

 
The plot can depart from the ideal for a number of reasons. One is that the errors are 
not normal so the 2

iX  are not distributed as 2χ . It is known that for the general 
incomplete Gamma distribution the fitted linear regression will have slope 1/ 2λ  and 
intercept α . Also, if the value (η ) for which the data become well approximated by a 
straight line is different from the theoretical value it may mean the effective degrees 
of freedom are different from (N-p). 



 
However, any of these reasons simply relates to the distributions and not the extreme 
events that represent outliers. As discussed further later, outliers are often indicated by 
very high values of the yi data for the high quantiles. In this case, the slope is usually 
much greater than one and the intercept large and negative. 
 
Once outliers are detected they should be traced to the images where the features have 
been located and checked very closely. Removing points suspected of being outliers is 
not always justified as in any well defined distribution there can be large values. 
SIEVER actually provides a good indication of when there are too few large errors 
(which might happen if points with large errors are arbitrarily deleted) since in this 
case the Q-Q plot will often “flatten” at the higher quantiles indicating there has been 
truncation of larger but still statistically possible errors. 
 

Data Plots to indicate Outliers 
 
In addition to the Q-Q Plot, SIEVER provides for some other plots that can give some 
assurance that the analysis is working as expected or for the location of outliers. 
These are listings and plotting of columns of the matrix US and or the Error Matrix. 
 
Listing and Plotting the Matrix US 

 
As noted above, the matrix first two columns US constructed from the SVD can be 
identified with the modelled “underlying” set of feature coordinates: 
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The last N-2 columns can be identified as orthogonal transformations of the errors 
between the affine model and the data. 
 
If only two images are being considered there will be two columns of the underlying 
coordinates and two columns of orthogonalised errors. If more than two images have 
been considered then there will be more possible error plots. 
 
An XY Plot of the first two columns will indicate if the transformation is working 
well as the coordinates should be recognisable as linear transformations (such as 
rotations and scaling) of the coordinates in any one of the data sets. 
 
An XY Plot of pairs of the columns of orthogonalised errors can locate outliers or 
large errors and confirm any findings from the Q-Q Plot. These alternative analyses of 
the data are important as in many cases outliers so affect the SIEVER model that the 
actual location is hidden apart from the general lack of fit or improbability of the 
model result. 
 



Listing and Plotting the Error Matrix 

 
To provide another way to search for errors in the location of features and to identify 
the image from which they are likely to have come, SIEVER allows you to list and 
plot the Error Matrix. 
 
The Error Matrix (E) is obtained by “rotating the errors back” into the original 
system. That is, it is a re-construction of the data matrix but with the model 
components left out: 
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It is the estimated error matrix in the model for the data matrix A into model and error 
as: 
 
 A B E= +  
 
XY Plots of the columns of E are sometimes very helpful but are also often either 
hard to interpret of not much more informative than the Q-Q Plot and plots of the 
columns of US. 
 

Using SIEVER to locate outliers 
 
SIEVER provides a set of tools but the effective location of outlier locations of 
features needs so skill in its use. The main problem is that outliers, especially when 
they occur at features with a high Predictive Error weight can affect the model to a 
degree where the outlier or outliers may well be fitted better than the majority of the 
features. 
 
Guarding against this is important and is best done by ensuring as much as possible 
that the features SIEVER identifies as have a large predictive error (PE) weight are as 
accurate and well placed as possible. A high PE weight indicates that a point has a lot 
of control over the model. This can be good and often some of the most important 
features are those with high PE weight. However, if a point with high PE weight is in 
error it can be very bad for the model. 
 
The existence of a number of outliers to the point where there is not a clear distinction 
between the fitted errors and the outliers is usually indicated by a very poor fit of the 
model and a lack of clear support for the rank of the A matrix as 2. All of these 
situations should lead you to look carefully among the located features and images for 
the problem points. 
 
What is more common is for the outliers to be clearly indicated as large errors after 
the model is fitted. These unusually large errors will show up in the Q-Q Plot and in 
the XY Plots of the columns of US and/or the columns of the estimated error matrix 
E. 
 



Because of the possibility that eliminating points with large but still statistically 
feasible errors from the data set will create a truncated distribution it is important to 
improve the locations of features rather than deleting them. The Q-Q Plot allows you 
to see if this has occurred. It is important not to over-SIEVE data sets before models 
are fitted. The objective is to find outliers and not remove points with large but 
statistically feasible error values. 
 
The objective of SIEVER is to identify and advise. You should always go back the 
feature identifications in images before action is taken with a specific point. If this is 
kept in mind SIEVER provides a very powerful means for screening collections of 
GCPs and preparing the corresponding data sets for MODEL and MOSMOD. 
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