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Introduction

m Questions to be discussed in this part:
— Sampling effects
— Spatial resolution

— Linear filtering

m This chapter deals with analytical tools for solving the

above problems

m The basis: the theory of linear systems.
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Elementary Problems

What is a linear system?

What is a shift invariant system?

Does a linear system generate new frequency contents?
Does a linear system change waveform of an input signal?

What effects does a linear system have on an input
sinusoidal signal?

When does a system of linear equations have
— a set of unique solutions,
— an infinite number of solution sets, or

— no solution?
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Definition of System

m A system is a mapping, or a function, that defines relation
between an input and the corresponding output.

m A system can be one-dimensional, two-dimensional, or
high-dimensional.

m Consider one-dimensional functions of time first, and then
generalize to two-dimensional functions of spatial variables.

X(t) | Linear y(t)

—_— —

System 1D system

f(x,y)

2D system
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Linear System — Principle of Superpositior_@

Linearity: Supposing
X, (1) = ¥, (1)
X,(t) = Y, ()

The system is linear iff

X (1) + %, (t) = vy (1) + Y, (t)

Corollary (a is an integer):

ax, (t) = ay, (1)

Axiom: a may also be irrational.
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Shift Invariance

= Asystem |X(t) = y(t)
is said to be shift-invariant if [X(t—=T) = y(t-T)

m For a shift invariant system, delaying the input merely
shifts the output by the same amount without changing
the nature of the output signal.

m In images, spatially shifting an input image does not
change the output image except for an identical shift.

f(x,y)=g(x,y)

f(X+AX, y+Ay) = g(X+AX, y+Ay)
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Shift-Invariant Linear Systems

m Assumption of shift-invariance and linearity is good for
many components of image processing systems:
— Electrical networks,
— Well-designed linear electronic networks, and
— Optical systems.
m The next few chapters will mainly be concentrated on

shift-invariant linear systems.
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Harmonic Signals & Complex Signals

m Physical signals are usually real:
— voltage
— sound pressure
— pixel gray-level
m Real signals can be made complex for convenience.

m The following complex-valued signal can be viewed as a
unit length vector rotating in the complex plane anti-
clockwise at an angular speed w=2rf.

x(t) =e’” =coswt + jsin ot

an
N
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Response to Harmonic Input

m Assume a harmonic input:

Xl(t) = ejwt

m The response of a shift-invariant linear system is

y,(t) =K (Uf)at)eja)t

Find the property

where ‘ of (o 1)

K(@,t) =y, (t)/e™*
is a function of w and t.
= Introducing time delay T to x,(t) to generate another input:

X, (1) =x (t-T)= elolT) —g7leT X (t)
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Response to Harmonic Input (cont.)

Response of the linear system to x,(t) is

Y, () = K(o,t-T)e" " = K(o,t -T)e Tx (t)

An alternative way to find y,(t): Recalling

ax, (t) = ay, (t)
X, (£) = % ()T =y, (t)e )T =y, (t) = K(e,t)e 7T x, (1)

Compare the above, the following must hold for any T:
K(o,t—T)=K(a,1)

This can be true only when K is independent of t:
y(t) = K(@)x(t)
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Response to Harmonic Input (cont.)

Conclusions:

m The response of a shift-invariant linear system to a
harmonic input is that input multiplied by a frequency-
dependent (time-independent) complex number.

® A harmonic input always produces a harmonic output at
the same frequency.

m A linear system does not generate new frequency
components, but changes magnitude and phase of

harmonic components existing in the input signal.
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Harmonic Signals and Sinusoids

m Add another constraint to shift-invariant linear systems:
They preserve realness.

Real input Shin et Real output
linear system

m Real and imaginary parts go through a shift-invariant
linear system independently of each other.

m Add an imaginary part to a real signal, and let it go
through a linear system. The real output can be extracted
from the complex output. Analysis can be simplified as:

Sinusoid  Harmonic Harmonic  Sinusoid

input = input —’m—’ output =¥ output

13
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Transfer Function

m The transfer function K(w) is sufficient to specify the

system. It contains all information about SILS.

m The polar form:
K (o) = A(w)e "

where A(w) is the gain, and # o) is the phase shift.

m Summary: 3 important properties of SILS:
— Harmonic input = harmonic output
— Completely specified by the transfer function K(w)
— The system causes amplitude change and phase shift.

14
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Convolution Operation

m To find a general expression of the output waveform y(t)
from a linear system — convolution integral may be
obtained using the superposition integral:

Linearity property: y(t) = f f(t,7)x(r)dr

Shift invariance: y(t-T)= J‘_‘” f(t,7)x(r=T)dr

Add Ttotand 7:

yO) = [ f(t+T,z+T)x(r)dz

f only depends on t—7: ‘ y(t) = Iw g(t—7)x(z)dr

15
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m The convolution integral:

v =" gt-rx@dr=g(®) *x()

Convolution Operation (cont.)

where g(t) is the impulse response of the system, which

must be real to maintain the realness of y(t).

m There are two ways to specify input/output relationship:
— Complex transfer function K(w), and

— Real impulse response g(t).

K(w) and g(t) must be related.
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One Dimensional Convolution

m The process of 1D convolution:

0 0 0

input function g(7) reflected

g(t—r)’\

0
reflected & shifted

convolving function

0 0

product of function

17

functions superimposed
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Properties of Convolution

Commutative: |f*g=0gx*f
Distributive: fx(g+h)=f=*g+f=*h
Associative: fx(g*xh)=(f*g)=*h

Differentiation:

%[f*g]=f'*9=f*9'
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Discrete 1D Convolution

Definition:

h(i)=f(@*g@)=2, F(Dyli-J)

m If lengths of f and g are n and m, respectively, the length
of h is N=(n+m-1).

m Although discrete convolution and continuous convolution
are different, they have many properties in common.

m Discrete convolution can be implemented on digital
images, and is useful in image processing operations,
especially in image enhancement and restoration.

19
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Matrix Formulation of Convolution

m Discrete convolution in the form of summation:
h(i)=f@)*g@)=> f(i)g(i-j)
j

Lengths of f, g and h are m, n and N=(n+m-1), respectively.

m To take advantage of matrix operations, convolution must
be re-formulated:

m First, zero-pad f(i) and g(i) to extend their length to N:

Matrix Formulation of Convolution (cont.)

m Form an Nx1 column vector f with elements f,(i), and a
circulant matrix G whose rows are zero-padded gp(i) in a
reversed order and its circularly right-shifted versions:

h() 9@  ge(N) - 9.2 fo ()
h(2) _ gp(z) gp(l) gp(3) fp(z)

h=G-f or

h(N)| [9p(N) Ge(N-1) - gp(@) || fo(N)

fai=) @ isism e
"o m<i<N n = The output is an Nx1 column vector h.
- : [ I
9.() = g(i) 1< '_3 n N= man—1 = Each row of G contributes to one element in h.
0 n<i<N | |
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Two Dimensional Convolution Two Dimensional Convolution (cont.)

m For 2D continuous functions:

h(x,y)=f =g =fwfw f(u,v)g(x—u,y—v)dudv

m For graphic illustration, see Fig 9-6 on p.153, where

f(x,y)= Aexp[— 22_2 (x2 1 yz)}

5%, 7) = 1 -1<x<1,-1<y<1
¥ =10 elsewhere

m Discrete 2D convolution: double integral becomes double
summation:

H=F*G or H(i,j):ZZF(m,n)G(i—m,j—n)

22
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m Consider a 3x3 matrix G, called the kernel, which is
convolved with a larger image, F:

= e N

~

fam

u/

IF

m Numbers of addition and multiplication operations:

Number of elements in G x Number of pixels in F

m Border effect: extend image by (1) repeating the border,
(2) filling in a constant, (3)periodically wrapping image, or
(4) simply cutting borders to produce a smaller output.

23
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= Asinthe 1D case, F (m;xn,;) and G (m,xn,) are extended
to (MxN) and made periodic, where M>m,;+m,—1 and
N>n,+n,—1. For simplicity, only consider M=N.

Matrix Formulation for 2D Convolution

* —
F- G

s & [

24
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Matrix Formulation (cont.)

= Form an N?x1 column vector f, from F, by row-stacking:

Shuozhong Wang, SCIE, Shanghai University
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= Each row of G, forms NxN circulant matrix as in 1D case:

Matrix Formulation (cont.)

G,,G,,...,G;,..., G,
where
g@®  gi(N) 9i(2)
(2 (1 (3
G- %@ 90 9.3
gi(N) gi(N-1) 9@
m Form a block circulant matrix, sized N2xN?2:
G, G, - G, Remarks:
G - G, G, - G, — Using matrix algebra,
P e 3 % 8 computation load is huge.
Gy, Gy, = G, — Useful in filter design such
- as in image restoration.
=) |h, =G.f,

26
Shuozhong Wang, SCIE, Shanghai University

Matrix Formulation: an Example

120
F.=|3 4 0
000

-1 0 1.0 0 0 -2 0 2]|[1] [-1

1 -1 0 0 0 0 2 -2 0|2 |-1

01 -1.0 0 0 0 2 -2/lo] |2

-2 0 2 -1 0 1 0 0 0/[|3] |-5

h,=G,f,=[2 -2 0 1 -1 0 0 0 0]||4|=-3

0 2 -2 0 1 -1 0 0 o/|o] |8

0 0 0 -2 0 2 -1 0 1/||0] |-6

0 0 0 2 -2 0 1 -1 0/|o] |-2

0 0 0 0 2 -2 1 -1]lo] |8
1 -1 2
H=F+G=|-5 -3 8
-6 -2 8
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Exercises: Discrete Convolution

F G-
3 2 2 2 -2

calculate F*+G by using the matrix representation.

m Calculate the above convolution using Matlab functions conv and
conv2.

m Calculate F+G using Matlab with different border treatments.

(1 1 2 3 3 2 1 0]

2 21 43112
010

1 255 41 2 2
= G=[1 2 1

0 2 4 4 25 4 3
010

0 223 465 3

1 312 35 4 2]

28
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Applications of Convolution

m Filtering operations such as smoothing, sharpening, etc.

m Deconvolution, removing the effects of imperfect linear
systems that have operated on the image. For example:
— Defects in the lens

— Motion blurring

= Noise removal or reduction:
— Estimating what was the signal before the noise was added.

— Detecting presence of known features buried in noisy background.
— Removing coherent (periodical) noise interference.

m Feature Enhancement: increase the contrast of specific

features (edges, spots, etc.), usually at the expense of
other objects in the image.

29
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Useful Functions in Linear System Theory

m Rectangular pulse: useful for modeling sampling windows
and smoothing functions.

1 —1/2<x<1/2 1
I1(x)=41/2 x==%1/2
0 elsewhere 12 12

m Triangular pulse: convolution of two rectangles.

1-|x|, |x|£1
A(x):H(x)*H(x):{ 9 x|>1

30
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Useful Functions (cont.)

m Gaussian Function: a smooth and unimodal function,
useful for modeling sampling windows, display spots, etc.

f(x)= exp[— 2);2}

m When used as a probability density function, the area
under the curve is normalized (X, is the mean):

f(x) = 21 Zexp{—%}
N LTTO

m An important property: Convolution of two Gaussians
produces another Gaussian:

Aexp{— (Xz_ a)° } *B exp[— (XZ_ b)* } = AB exp{— X=(a+b) }

o} o} 2(c? +07)

31
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Useful Functions (cont.)

m The impulse: Dirac delta function &(x), a symbolic function
defined by the following integral property:

[ s0aax=[" s0)dx =L [ (x)5(x) dx = £(0)

m The impulse can also be considered as the limit of a
rectangular pulse with the width — O:

5(x) = |im1H(fj T

a-0 g a

1/a

—-a/2 al2
m Impulse is an identity function under convolution:

s * f(x) =] 8(0)F (x=2)dr = f (x=17)|, o= f (X)

Shuozhong Wang, SCIE, Shanghai University
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Useful Functions (cont.)

m Properties of the impulse function:
— Shifting

f; f ()0 (x—Xy)dx :J: f(X+ %, )S(X)dx =F (x,)

— Scaling

5(ax)=i5(x)
|a]

— Output of a linear system to the impulse function is the system’s
impulse response. This explains the term impulse response.

500%h(9) = [ 8@hx-o)dx=hex)| LI

33
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Useful Functions (cont.)

m Step function: derivative of delta function.
1 x>0
u(x)=<1/2 x=0 1—————
0 x<0

1 X > X,
U(X=%,)=1<1/2 x=Xx, 1b-—
0 X < X,

u'(x) = 6 (x) 0% X
u(x) = I:5(x)dx

[ ux) f(x)dx =j0°° f (x)dx

34
Shuozhong Wang, SCIE, Shanghai University

Convolution Filtering

m Smoothing — moving average

f(X) g(x) h(x)

* [T, =

NG A

m Main feature of the convolution kernel for smoothing:
non-negativity.

m The convolution window can be triangular or Gaussian:

weighted moving average.

35
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Edge Enhancement: Sharpening

m A convolution kernel with a positive peak and negative
side-lobes is a high-pass operator. The effects:
— Increasing slope.
— Producing overshoot (ringing).

m Example 2:

g(x) = 26(x) — exp(— XZ/ZGZ) —
- XZJ 9(%)

20°

h=f *g:2f(x)—f(x)*exp(

m Unsharp masking (old darkroom technique):
Original — Blurred image = Sharpened edge X
Refer to Fig 9-18 on p.166.
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Summary

Linear system: principle of superposition holds.
Shift-invariance: system property independent of time.
Harmonic signals: used to simplify analysis of linear
systems.

A linear system does not generate new frequency
components.

A shift-invariant linear system is specified by transfer

function.

37

Shuozhong Wang, SCIE, Shanghai University

Summary (cont.)

m Output waveform of a shift-invariant linear system is the

convolution of the input with the impulse response.

m Convolution may be implemented to perform digital
filtering.

m Convolution may be used for deconvolution, noise
reduction, and feature enhancement.

m Convolving two Gaussians produces another Gaussian.

m The delta function is an identity function under

convolution.

38
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Chapter 10

Fourier Transform
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Introduction

m Fourier transform is a powerful tool in linear system
analysis.

— Itis important to combine a theoretical knowledge of FT properties

with a practical knowledge of their physical interpretation.
— Time spent to get familiar with the FT is well invested.
m Two alternate ways to handle signal processing problems:

— Time/spatial domain techniques

— Frequency/transform domain techniques

40
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Introduction (cont.)

m It is useful to be able to think freely in either the spatial or

the frequency domain.
m We first consider 1D problems, and then generalize to 2D.

m Laplace and Z-transforms will not be considered since
image processing is not restricted to the requirement of

causality.
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Eausality

m A system is said to be causal, or physically realizable, if

the output is caused by input of the past and present. The
output does not depend on the future input.

m The impulse response of a causal system is one-sided: It
must be zero for t < 0.

® In image processing, we are working with recorded data:
Data in the future are available, or the present input can
influence the past.

m As aresult, convolution kernels can either be even or odd,
and the coordinate origin can be chosen arbitrarily.

42
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The Continuous Fourier Transform

= One-dimensional Fourier transform pair:
F{f()}=F(s) = [" f (t)e 17 dt
FYF(s)}= j“’ F(s)e!*™'ds

m Example: Gaussian function (for derivation, see p.173)

exp[-7t’] < exp[-7s?]

m Existence of FT: for many realistic signals, f(t) either dies
out rapidly for large t, or is truncated to a limited period or
space, thus the absolute-integrability holds:

j_“;| f(t)|dt < oo

43
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Existence: Periodic & Constant Functions

m Strictly speaking, periodic functions such as f(t) = cosat
and constant functions such as f(t) = 1 do not satisfy the
condition of absolute integrability.

m The problem can be handled with the help of delta function:

F{cos(24,t)} = %[5(3 +f)+5(s— f,)]

T{sin(Z;ﬁot)}:%[é(s+ f,)=3(s—f,)]

Existence: Random Functions

m Random signals are aperiodic and do not die out with time,
therefore are not absolutely integrable.

m Consider autocorrelation function of a random process:

R (D) =E{f O+ = Iim%ﬂ f(t) f (t+7)dt

process

m R(7) is always real and even, and its Fourier transform is
the power spectrum of the process.

P.(@) = [ R((x)exp[-imr]dr

1} =5(s)
T I Remark: The existence of Fourier transform is not a
S problem for image processing.
£, 0
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The Discrete Fourier Transform The Discrete Fourier Transform (cont.)

= View truncated function g(t) as a cycle of periodic function.

m By making s a discrete variable and taking integration only
over [-T/2, T/2], the FT of g(t) becomes (As = 1/T)

G, =G(nAs) = [ g(t)exp[- j2z(n Ast)] dt

m For a periodic signal, the frequency domain representation
Is discrete. G(s) is non-zero only at equally spaced
discrete intervals.

Periodic in time domain <> Discrete in frequency domain

m The inverse transform:

gt)= i G(nAs)exp[j2z(nAst)]As = Tii G, exp{ j27z[$tﬂ

n=0 n=0

46
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G, =G(nas) = [ g(t)exp[-j2z(n Ast)] dt

m Discretize both time and frequency, and the FT becomes
N/2

G,=G(nAs)= > g(iAt)exp[—j27z(n As)iAt] At

i=—N/2

0, = g(iAt) = > G(nAs)exp[ j2(n As)iAt] As

1 N/2 |
== Gnexp{jZﬂWn}

n=-N/2

m Finally, range of summation becomes finite because

Discrete in time domain < Periodic in frequency domain

Shuozhong Wang, SCIE, Shanghai University




The Discrete Fourier Transform (cont.)

m Changing range of indices, and making the forward and
inverse transforms symmetric, DFT can be expressed as

1 Q= . n.
Fn:_NZ fiexp|—j2z—i|, 0<n<N-1
i=0

m DFT is closely related to CFT so that they can be viewed
essentially equivalent in most image processing problems.

m We can use CFT when analyzing an image processing
problem, and then implement the solution with DFT.

Demo_CFT_DFT

48
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The Fast Fourier Transform

m For DFT, number of multiplications and additions oc N2.

m Using the fast Fourier transform algorithm, the number of
operations is reduced to the order of N log, N.

m Matrix form of DFT:
Fo Wo,o Wo,l "' WO,N—l f0
F _ Wl,o W1,1 o Wl,N—l f1

, orF=wf

FN—l WN—l,O WN—l,l WN—l,Nfl fN—l

m The FFT algorithm can be derived by considering the
symmetry and periodicity of the terms in W/

1 . ni
W . =——exp|l— 27—
"IN p{’ N}
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FT of Some Useful Functions
exp(-zt®) < exp(-zs?)
I1(t) < sin(zs)/(ns)
A(t) & sin?(z8)/(7s)?
o(t) < 1
u(t) & 1Y2[5(s) - j/(79)]
cos 2ft < 12[6(s+ f)+0(s+ f)]
sin 2t < j/2[o(s+ f)—o(s+ )]
exp(24ft) < o(s— 1)

50
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Properties of Fourier Transform

m Symmetry properties: in general, complex < complex.

m Even and odd: a function can always be broken into even
components and odd components:

f(t)=f.(t)+ f,() = F(s) = F.(s)+ F,(s)

(1) = %[f O+ f (-] F(s) =] f,(t)cos(2zst)dt

f (1) :%[f (- f (O] F,(5)=—i[  f,®)sin(2st)dt

= An even component produces an even component in FT,
without introducing a j.

= An odd component produces an odd component in FT,
introducing a |.

51
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Properties of Fourier Transform (cont.)

m Real and imaginary:

The real even part produces a real even part.

The real odd part produces an imaginary odd part.

The imaginary even part produces an imaginary even part.
The imaginary odd part produces a real odd part.

For an even part, the realness is preserved.

For an odd part, the realness is flipped.

m Of particular importance, the Fourier transform of a real
signal is Hermitian (conjugate symmetric):

Evenness, Oddness and Symmetry

(0)

F(s)

Even

Even

Odd

Odd

Real and even

Real and even

Real and odd

Imaginary and odd

Imaginary and even

Imaginary and even

Imaginary and odd

Real and odd

Complex and even

Complex and even

Complex and odd

Complex and odd

Real | Hermite

Imaginary | Anti-Hermite

©

F(s)=F"(=9) Hermite | Real
Anti-Hermite | Imaginary
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Properties of FT: Addition Theorem Properties of FT (cont.)
m Linearity of the Fourier transform: m The shift theorem:

f(t) < F(s) F{f (t—a)}=exp(-j27as)F (s)

g(t) < G(s) The exponent represents rotation in the transform

domain — The amplitude is unchanged, while the phase
f)+g(t) < F(s)+G(s) redistributed.
cf(t) < cF(s) = Convolution theorem: f(t)*h(t) < F(s)H(s)

m See Fig.10-1 on p.181 for an example.

m Programming: plot waveform x(t) = a cos(2xft) and its
spectrum using proper axis scales, and study effects
of truncation, windowing, and frequency changes.

54
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Scaling property: 1 S
f —F| =
See Fig.10-2 on p.184 (@) < la] \a

Parseval’s theorem:

[ 1f@Pdt=["|F(s)Pds

Shuozhong Wang, SCIE, Shanghai University

55




Linear Systems and Fourier Transform

m Terminology:

f(t): input g(t)=Ff(t)=h(t):
signal h(t): impulse response output signal

F(s): spectrum of JRAORIEUSERIEI]y G(s)=F(s)H(s):

System ldentification (cont.)

m Example 1: When f(t) = &t), the impulse response is
identical to the output signal: h(t)=g(t).

m Example 2: When input signal is T1(t) and output is A(t),
the impulse response is also I1(t). See Fig.10-4, p. 187.

input signal spectrum of £ (s _ Sin(zs)
h(t) & H ()
= HE) output signal (79)
m Linear system identification: find the impulse response sin?(7s)
of a system given input and output signals. G(s) = (75)?
G(s)=F(s)H(s)= H(s)=G(s)/F(s), F(s)#0 - : :
h(t) = (Fl{sm (723) sm(;zs)} _ Tl{sm(ns)} _ 1)
therefore, |, 1y _ o {G(S)} gt {T[g(t)]} (75) (75) (75)
F(s) F[1(t)]
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System ldentification (cont.) System ldentification (cont.)
= Example 3: given f(® = In general cases, no analytical expressions for the input
1 —Y2 t<0 iy and output signals are available. The system
f(t):u(t)_EZ 10/2 ::8 < F(S):% 0 identification problem must be solved numerically.
> N
and R 0 H (s) = G(s)/F (s)
— <_ |
—jsin(s)| -1 /_
g(t) =<t -1<t<1l < G(5)= - , ' . . .
V2 ts1 2(7s) : 0 1 m Zeros in the input spectrum should be avoided.
m If both F(s) and G(s) have zeros at the same frequencies,
- H(s) :%:M = h(t) =TI(t) obtain H(s) at these frequencies by interpolation.
S 7S

58
Shuozhong Wang, SCIE, Shanghai University

59

Shuozhong Wang, SCIE, Shanghai University




Sinusoidal Decomposition

m (This section is for self-study)

60
Shuozhong Wang, SCIE, Shanghai University

Some Concluding Remarks

m A linear system can change the amplitude and phase of a
sinusoidal input, but cannot change the frequency.

= A linear system cannot generate new frequency contents.

m Two ways of viewing operation of linear system:

— Convolution with functions being reflected, shifted,
multiplied, and integrated.

— Sinusoidal decomposition followed by multiplication and re-
summation.
m Evenness and oddness are preserved between the two
domains.

m In the Fourier domain, the negative frequencies are
redundant, but convenient for mathematical operations.
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Fourier Transform in Two Dimensions

m Definition:

F(u,v) = fw J'_Z f (X, y)exp[—j2z(ux+vy)]dxdy

f(x,y)= J: f; F(u,v)exp[ j27(ux +vy)]dudv

where u and v are spatial frequencies.

More examples
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Discrete 2D Fourier Transform
m Definition:
1NN _ i k)| m=01..N-1
G(m,n)_ﬁi=0 k=og(|,k)exp{—JZn(mW+nWﬂ, N=01.. .N-1

I —(m nY] i=0L..N-1
KN==%Y6(m, 27 iM™ ek |
9(.k) NZZ (m n)EXp{J ﬂ(IN+ Nﬂ k=01, . ,N-1

m=0 n=0

m A 2D DFT can be separated into two 1D DFT (row-wise
and column-wise):

S R ) )
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©

Fourier Basis Functions

® The 2D Fourier transform:

N-1N-1

> > g, k)Adi, k;m,n)

G(m,n) _1
N i=0 k=0

where A(i, k; m, n) are the basis functions:

A(i,k;m,n):exp[— j%[(im+kn)}

= cos[—%(im + kn)} +] sin[—%(im + kn)}

m 2D basis functions are outer products of 1D basis.
m Any image can be viewed as a linear combination of
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Matrix Formulation of 2D DFT

m It can be shown that the DFT can be expressed in the
following matrix notation:

G = FgF|where Fis a unitary and symmetrical matrix:

WO WO . WO
1 ik 1 (w® wht oo owht
F:[fik]:{ﬁexp(_ JZ”WH:W . )

W° W;\l—l W(l\.l—l)z

where W =exp[- j27z/N]

m Unitary transform:
F'=F"
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Properties of 2D Fourier Transform

The following properties are unique to 2D FT:
m Separability:
It f(xy)=f()f>(y) = Fuv)=FKU)FV)
m Similarity (scaling property):
F{f(ax+by, ax+b,y)}

= (AB, + A,B)F(Au+ AV, Bu+B,v)

where
— b, —b
ab, —a,b; ' ab, —ab,
_ - 2
aibz aZbl i a1b2 - a2b1
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Properties of 2D Fourier Transform (cont.)

m Rotation: The spectrum rotates by the same angle as the
image. Using the similarity property, and with

a =co0s#d, b =sind, a,=-sind, b,=cosd
~A=a, A=Db, B=a, B,=b,
Therefore,

F{f (xcos@+ysing, —xsin@+ycosH)}

=F(ucos@+vsing, —usin g +vcosd)

m Projection: When an image is collapsed into a 1D function:

p(x) 2.[: Fxy)dy < PU)=FUO)| Try 0 prove.

This can be generalized to an arbitrary direction.
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Properties of 2D Fourier Transform (cont.) @

m Circular symmetry and Hankel transform:

Suppose |f(x,y)=f.(r), r’=x*+y?
F(u,v) =[] (x y)exp[—j2z(ux+vy)] dxdy X =rCcos0

:” f.(r)exp[- j2aqr cos(@ - g)]rdrde | YT rsing
- 2 U=0qCcos¢
:fo fr(r)U0 exp[—j27zqrcost9]o|9}rdr v=gsing

- 2;;]1 f.(r) Jo(2mgr)rdr =F.(q)

= Tl e @ =2ef) rouEmnrar] kel

f(@=27" F.(a),(27ar)qdg ;ezrgborder:

Bessel functions
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Amplitude and Phase of Fourier Transform @

The amplitude specifies how much of each sinusoidal

components is present.

The phase information specifies where each of these

components resides within the image.

As long as components are kept in proper positions, the

amplitudes appear to be less critical.

Therefore, most practical filters affect amplitudes only

while doing little or nothing to the phase in the spectrum.

_ Demo_FFT_mag_ang
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Amplitude and Phase of Fourier Transform @

Programming
practice: Write
Matlab codes for
this experiment.

A sample

, & Reconstructed from
program ‘L | JL‘ phase spectrum

Correlation and Power Spectrum

Auto-correlation:

R (1) =f@®* f ()= F)f(t+7)dt

Power spectrum: Fourier transform of R(7):

P (8) = H{R; (1)} = F{f () * f (-1)}
=F()F(=s)=F(s)F"(s)=|F(s)

Cross-correlation:
Ry (1) = F )+ g(-1) = f(Og(t+7)dt
Cross power spectrum

Py (8) = F{Ry, (7)}

Shuozhong Wang, SCIE, Shanghai University
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Summary of FT Properties

Property Time (space) domain Frequency domain
Terminology signal, impulse response | spectrum, transfer function
Definition fi F (s)exp[ j2zst]ds f: f (t) exp[ - j27st]dt
Addition theorem af (x) +bg(x) aF (s) +bF(s)
Similarity theorem f (ax) (1/1a])F(s/a)

Shift theorem f(x—a) exp[— j2mas] F(s)
Convolution f (x)*g(x) F(s)G(s)
Differentiation df (x)/dx j27s F(s)

Autocorrelation R, (z) = f(x)* f"(-x) |F(s)|2 =P, (s)

Parseval theorem [1f o dx=E [IF@s)ds =E

Power theorem

[ 009" (dx =P [ F(s)G"(s)ds =P
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Summary of Important Points

m FT establishes unique correspondence between a complex
valued function of space and that of frequency.

FT of Gaussian is another Gaussian.

Evenness and oddness are preserved.

FT of a real signal is Hermitian.

FT is a linear transformation so that addition theorem holds.
Shifting a waveform introduces phase shift in the spectrum.

Convolution of two functions corresponds to multiplication
of their spectra.

m Squeezing a signal broadens its spectrum, and vice versa.
m The energy of a signal is equal to that of its spectrum.
m Impulse response and transfer function are an FT pair.

Shuozhong Wang, SCIE, Shanghai University

Summary of Important Points (cont.)

m The transfer function can be obtained from the input and
output spectra.

m FT of a sinusoid is an impulse pair.
m Signal can be decomposed into infinite sum of sinusoids.

m A linear system operates separately on sinusoidal
components of the input, and summing up at the output.

m If a function is separable, so is its FT.
m Rotating image rotates the spectrum by the same angle.

m Collapsing a 2D function onto a line L results in a profile
of spectrum taken along a line in the same direction as L.

m The auto-correlation function and the power spectrum are
a Fourier transform pair.
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Hermite and Anti-Hermite

m Hermite function:
F(X)=f.(x)+] f,(X)
fF(=x)=f.(=x)+] f,(=x)=f7(x)

m Anti-Hermite function:
F(x)=f,(x)+ ] f.(X)
F(=x)=f,(=x)+] f.(-x)=—17(x)
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Fourier Series

m A periodical signal can be expanded in to an infinite series:

a = n = . n T T
f(t)=—+> a cos| 2zr—t |+ > b sin|27xr—t| te|-—,—
O=7+22 (”Tj;"(”Tj 6{22}

where

_2 f(t 27 —t |dt
a”_T_I , (t)cos | 27 —
b =2 (" t(t)sin| 2 d
"_T_I— f(t)sin| 27 —t |dt
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Zero-Order Bessel Function

3o(2) == [ expl- jzcos 014
0 27 90

Shuozhong Wang, SCIE, Shanghai University
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The Schwartz Inequality

®m It can be shown that

[ 20dt[ g*®dt = [ f Ooat] (1)
m First, define a nonnegative function of the variable A:

Q) =14 )+ g dt >0
m Expanding the integrand:
[0 @+ g dt =2°[ £2@)dt +24] f ®)g()dt+ [ g*@®)dt|  (2)

This is a quadratic form in the variable A. The following inequality
must hold to make (2) nonnegative.

o[ fowat] -4 F2matf > @ct <0
This proves (1).

(b°>—4ac)<0 =
The quadratic

equation has no
real roots.

78
Shuozhong Wang, SCIE, Shanghai University

Waveform and Spectrum

T=1;N=512;

dt=T/(N-1); % Sampling interval

fs=1/dt; % Sampling frequency
tn=Fs/2; % Nyquist frequency

df=Ffs/N;

t=linspace(0,T,N); % time axis

fl=linspace(0, fs-df,N);f2=linspace(-fn,fn-df,N);
freql=df*25;freq2=df*56;

A=1;B=.8;
s=A*cos(2*pi*freql*t)+B*sin(2*pi*freq2*t);
Sl=abs(fft(s));S2=fftshift(Sl);

subplot 311;plot(t,s);axis(J0 T -2 2]);

subplot 312;plot(f1,S1);

axis([0 fs-df 0 max(S1(:))*1.2]);

subplot 313;plot(f2,S2);

axis([-fn fn-df 0 max(S2(:))*1.2]);
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2D Fourier Transform: Magnitude & Phase

x=getimage;

[M,N,L]=size(x);

if L==3, d=rgb2ycbcr(x);x=d(:,:,1); end
X=FfFt2(double(x));
Xphase=exp(J*angle(X)) ; Xmag=abs(X);

% Mag n phase

yphase=iffFt2(Xphase) ;ymag=i fft2(Xmag); % reconstruct

a=5;b=800-M;

figure("Pos",[a b N M], "Menu®,"none", ...
*Num*®, "off","Name", "original®);

imshow(x);

a=a+min(N,300);

figure("Pos",[a b N M], "Menu®, "none*", . ..
“Number*®, "off", "Name", "FFT: abs");

imshow(uint8(rescale(log(fftshift(Xmag+eps))))):
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Go back

2D Fourier Transform (cont.)

a=a+min(N,300);

figure(*Pos",[a b N M], "Menu®,“none-", ...
"Number*®, "off*", "Name", "abs-reconstructed");

imshow(uint8(clip(10*rescale(abs(ymag)),0,255)));

a=a+min(N,300);

figure("Pos",[a b N M], "Menu*, "none*", . ..
"Number*®, "off*", “*Name", "FFT: angle®);

imshow(uint8(rescale(log(fftshift(Xphase+eps)))));

a=a+min(N,300);
figure("Pos",[a b N M], "Menu*, "none*", . ..

“*Number*®, "off*", "Name~", "angle-reconstructed®);
imshow(uint8(clip(5*rescale(abs(yphase)),0,255)));

: testFFT
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Two-Dimensional DFT

FFT of Lena
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Eigenvalues and Eigenvectors Orthogonal Basis

m For an NxN matrix C, there are N scalars 4, (k=0, ..., m Rows of T form an orthogonal basis for the N-dimensional
N-1) such that vector space of all Nx1 vectors.
IC-41]=0 = Example:
Y | |cos@ —sind| x
A are called the eigenvalues of the matrix. y,| |sind cosé | x,
= The set of N vectors a, (k =0, ... , N-1) such that — —
6 —sin@ 0.866 -0.5
(singd cosd | | 0.5 0.866
are called the eigenvectors of the matrix C. They are m The basis —rows of T: t,=[0.866 -0.5], t,=[0.5 0.866].
Nx1, and each corresponds to an eigenvalue. = Any 2x1 vector can be expressed as a linear combination
m The eigenvectors form an orthonormal basis set. of t, and t,.
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Fourier Basis Functions (Images)

JDFTEER RS, REERERES. EIEX | - perEsEs, HHEsRE =M. (=113

O R R
— ""u: IIl.."l. '_u i1} ': i r.I'r.l' ..|I"'

Any 8x8 image can be viewed as a linear combination of these basis functions.
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